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Before the main point of this paper can be developed, it is necessary to
review some elementary facts about the Fibonacci Sequence and Pascal's
triangle.

It is well-known that rectangles exist such that if a full-width square is
cut from one end, the remaining part has the same proportions as the original
rectangle,
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Assuming width to be unity and length x, we have

or

(1) xX-x-1=20

The greatest root of (1) is the number ¢, called the Golden Ratio, and the
rectangle defined is the Golden Rectangle of Greek geometry. Each root of (1)
has the property that its reciprocal is itself diminished by 1, so that
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Given any two initial integral terms u; and uy not both zero, a

Fibonacci Sequence is defined recursively by

@) Uy 7 un—l * un—z

It is a well-known property of such sequences that

u
lim _n+1
_ u
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if uy = 0 and uy, = 1, we have the Fibonacci sequence.

If a rectangle is defined such that when an integral number k of full-
width squares are cut from one end, the remaining part has the same propor-
tions as the original rectangle, then

(3) vi-ky-1=0

where the width is unity and the length is y.
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The rectangle defined is a golden-type rectangle. The roots of (3) behave much

like ¢, thatis, 1/y =y - k. The greatest root in absolute value of (3)is the

—a-i y-k j&—
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where u, = kun~1 + oo In fact, it is well-known that under certain con-

ditions Fibonacci-like sequences defined by
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(4) u = au + bun

given initial terms u; and uy not both zero, where a and b are real, have
the property that

where o is the greatest root in absolute value of (See [3] )
(5) x2-ax-b =0

The condition is that a and b must be such that the roots of (5) are not both
distinct, and equal in absolute value.
The above general result can be established in the following way: Con-

sider sequences such that the nth term u, satisfies

(6) u, = ca + dBn
By substitution in (4), o and [ can be determined so that sequences (6) will
satisfy (4) and be Fibonacci-like sequences. We find that the coefficients of ¢
and d are ozn—z(a2 - ao - b) and ,81‘1-2(62 - aB-b), respectively. Sequences (6),
therefore, satisfy (4) if ¢ and B are roots of (5).

On the other hand, if o« and B are roots of (5), then cafnnz(c«2 - ax - b)
+ dﬁn_z(ﬁ2 - aB - b) = 0 is satisfied for any choice of ¢ and d. But then we
have co' + dg" = a(ca™ 1+ dﬁn—l) + b(can_2 + dBn—z ). Moreover, if o % 8,
¢ and d can be determined given initial terms u; and u,. Hence a sequence
satisfying (4) satisfies (6) under the conditions stated. If || >| Bl, we can

use (6) to obtain the

lim "o+l  lim co + d(ﬁ/a)nﬂ
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The above limit does not exist, of course, if o = -B. If the roots of (5) are

equal, then we can set

(7) u, o= ca + ndo"

and show by arguments similar to those above that (7) is a Fibonacci sequence
if and only if o is the root of (5) and aw + 28 = 0. But the roots of (5) are
equal if and only if @ = a/2 and b = -a?/4. Therefore all requirements for
(7) being a Fibonacci sequence are met. It is now possible to solve for ¢ and
d, and to show that for sequences (7),

lim un+1

n—c© u
n

= o

An interesting observation has been made about the array of numerals

known as Pascal's Triangle. If a particular set of parallel diagonals is desig-

nated as in Fig. 1, then the sequence resulting from the individual summations
of the terms of each diagonal is the Fibonacci sequence. [2 ]
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Figure 1

1

Therefore, the limit of quotients of sums of terms on these parallel diagonals
of the triangle is «. We shall now show that some generalizations of this

connection can be made.
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To begin, we note that the indicated diagonal sums in Fig. 2 are indeed

the first few terms (except the first) of (4) if u; = 0 and u, = 1,

row 0 {—

TOW 1 a //

row 2 ——“—-maz/2ab” K2
TOW 3 83/:;‘/’?:;”/53/
—at e 3h=—"Fa2n2 Lra.h3///:‘5

Other sets of parallel diagonals of Fig. 2 also have interesting proper-
ties. It is possible to formalize the definition of the array given as Fig, 2, but
it will be more efficacicus here to simply refer informally to the figure in the
arguments to follow, We will assume only that a and b are real, and that

Fig. 2 is a Generalized Pascal's Triaungle, The row index shall be j, and the

term index for each row, 6, each ranging over the non-negative integers.
The jth power of (a+ b) is the sum of terms in the jth row of Fig, 2.
Definition 1. A diagonal sum Xjr of the generalized Pascal's triangle

shall be given by

j - 1o .
x. = E : ) 6(r+1)b6
jr 5

Counting from left to right in Fig. 2, the (0+ 1)th term of the diagonal sum is
the (6 + 1)th term in the (j - rd)th rowof the triangle as ¢ ranges over the
non-negative integers. Hence Xjr is a function of j and r .

Note that the role of r is simply to determine which terms of the tri-
angle are to be summed. This has the effect of defining a set of parallel diagon-

als for each r. For example, if v = 1, the first term of xg is the first
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term of the sixth row of Fig, 2, The second term of x4 is the second term
of the fifth row of Fig, 2, and so on, If r =3, the first term of xg is the
first term of the sixth row of Fig. 2, but the second term of x4 is the second
term of the third row, and so on. When r = 0, Xj 0 is the sum of termsonthe
jth row. A sequence {xjr}j of diagonal sums is uniquely determined by r.

Since for j = 0 the (j - r6)" row is defined for every r only when 6 =0,

Xop = 1 for all r. Further, X, .=a if >0, If r=2, the first fewterms
of the resulting sequence are:
(1, a, a2, a3 + b, a? + 2ab, a + 3a%, +:-)

Theorem 1. For sequences {Xjr}~ of sums of terms onparallel diagon-
]

als of the generalized Pascal's triangle,

®) Xp T gy T PGy
. J-r-1
Proof: [ r+1 Yij-r(d+1)-1
‘ .
B j=6(r+1)-(r+1), 6+1
b oy T o1y T Z & b
6=0 6 [L-_1]
r+1y /j-r6-1
+ Z a]—é (r+1)b6
6=0 6
(] [Ll]
r+11/j-r6-1 r+1i/ j-ré6-1
_ a]—(5(1"+1)b(§ N 2 : a]—é(r+1)b6
6=1 6 -1 0=0 o
[ _3_] [u]
tr+1)/ j-r6-1 r+1} /j-ré-1
_ a)-é(r+1)bo + ) aJ-@(r+1)b5
6=1 6-1 6=1 [

];;%] j-ré—l\ j-ré-1
+

J-o(rel) 0

6=1 5-1 / 6

but
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j-r6-1 j - b
_ 9
= T j-ré
6 -1 0
and
j-rd j-16-1
Ll + 1) _
j - rd B
9 o
so
d
r+1 j-rd 5
- ) 2:
bx(j-r—l)r * aX(j—l)r =at 5
6=1 8 j-r
j - ré\
+ LAz o@s 1) [ j-0(r+1) 6
j - rd
19}
-
r+1 j - 1rb
= al 4 E 2700
jr
6=1 o

In view of Theorem 1, any property of sequences defined recursively by

(9) u_ = au + bu

will be aproperty of sequences of sums of terms on diagonals of the generalized

Pascal's triangle. Further, these diagonal sequences will all be of the special
r-1 . R
case uy =0, up =1, ug = a, -, u..; = @& 5 since r+ 1 initial terms

are required for (9) to generate a sequence. We note that diagonal sum X(n-z)r

is u of (9) given the above initial terms.

As in the proof of
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lim un+1

N—ow U =9 4
n

given (2), we shall establish the existence of similar limits for the sequences
defined by (9). If we set

n n n n
(10) un=eoa0+e1a/1+eza/2+"' +er01r ,

then substituting in (9) the coefficients of the e, are

n-r-1 , r+1
a. (.

r .
i i ‘aai*b)(1=0,1,"',1’) ’

and (9) is satisfied if the @; are the r + 1 roots of

(11) Lo b =0

Conversely, given that the @; are the roots of (11), it follows that sequences

(9) canbe written in the form of (10) if the e; can be determined. One can ob-

tain from tbe given (r + 1) initial terms (r + 1) equations uy = eooz%+ e1a/]1
+ -0t era/IJ_ (j=1, 2, «--, r+1). This set of equations has a non-trivial

solution for the € however, if and only if the @; are distinct, Whether or
not the terms of sequences defined by (9) canbe written in the form of (10) de-
pends, therefore, on whether or not we can determine conditions for the multi-
plicity of the roots of (11).

Suppose p is a root of (11) where a and b are both not zero. Then

(11) may be written as (x - p)Q(x) = 0 where

Q) = '+ @ - s - apt T - AP s poapt L.

Clearly p is a multiple root of (11) if andonly if it is a root of Q(x) = 0. But

then it is easily verified that
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ar
r+ 1

Now since p is real, at least all complex roots of (11) are distinct.

DeGua's rule for finding imaginary roots states that when 2m succes-
sive terms of an equation are absent, the equation has 2m imaginary roots;
and when 2m - 1 successive terms are absent, the equation has 2m - 2 or
2m imaginary roots, according as the two terms between which the deficiency
occurs have like or unlike signs. Accordingly, we see that (11) has at most
three real roots, since there are r - 1 successive absent terms and hence at
least r - 2 complex roots. Further, if f(x) = xr+1 - ax’ - b, the two criti-
cal numbers of f are zero and ar/(r+1). Since f(ar/(r+1)) is an extremum
of f, the greatest multiplicity of any real root of (11) is two. [1 ]

If b is zero but a is not, then the roots of (11) are zero (of multiplicity
r), and a. Other cases are trivial.

If the real roots of (11) are distinct and ¢, is any root such that |oz0]
> |ozi! i=1,2,---,r), then

u e ol an+1 + +e ol
lim ‘n+1 _ lim 0% C1%1 rr
n—oc u Tn—o n n n
n ey * ey t oo +erar
n n
. ag t e/ a + e te o (o /o
_ lim %%t @ 1(@1/ ap) 2oy (@ /)
) n n
ey + eg(@y/ap) + +-- +er(01r/a’o)
u
lim "nt+l1
Therefore hew u = @
n

It is clear that ar/(r + 1) is a root of (11) if and only if
ar+1 rr

(r+ 1)r+1
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Suppose @, and oy are this root, Then we can set

n n n n
(12) U, = gt nejy t ey toers e

and use (9) to find the coefficients of the e;. The coefficient of e where

-r- +
i1 is ozin r l(ozir L aaIi. - b) and for e; we have
aot
- 0
naré r-l <aI(;+1 - aalg - b+ + ern+ 1)>

It is clear that the required condition is that the a; be the roots of (11) and
aozro +b(r +1) = 0. But with ¢, chosen as above, this is indeed the case. As
before, (12) can be used to generate equations which enable us to find the e;-
Finally

lim uLJrl_

n—oco u
n

exists and is the greatest root of (11) in absolute value.

Since (9) generates a real sequence given real initial terms, not only is

. u
lim "n+l1
N— oo u
n

the greatest root of (11) in absolute value, but it must also be real. Hence the
greatest root in absolute value of (11) must be real.

If a,b, andr in (11) are such that two distinct roots share the greatest
absolute value of all roots, then it is easily shown that no limit exists.

Employing simple unit theorems, we can prove that

. u . u
lim n+s s .. lim n+1
= a, if - =
nN—- oo u n-—co u
n n

We are now able to state that:
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Theorem 2. For all sequences formed by sums of terms on parallel di-
agonals of the generalized Pascal's triangle, and for all sequences defined by

(9) given r + 1 initial terms,

lim  “nt+s
n— o u
n
exists and is the greatest root in absolute value of

r+1 T

x5 —ax® -b =0 s

provided this abhsolute value is not shared by two distinct roots.
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